Simultaneous targeting of two ligand-binding sites on VEGFR2 using biparatopic Affibody molecules results in dramatically improved affinity
نویسندگان
چکیده
Angiogenesis plays an important role in cancer and ophthalmic disorders such as age-related macular degeneration and diabetic retinopathy. The vascular endothelial growth factor (VEGF) family and corresponding receptors are regulators of angiogenesis and have been much investigated as therapeutic targets. The aim of this work was to generate antagonistic VEGFR2-specific affinity proteins having adjustable pharmacokinetic properties allowing for either therapy or molecular imaging. Two antagonistic Affibody molecules that were cross-reactive for human and murine VEGFR2 were selected by phage and bacterial display. Surprisingly, although both binders independently blocked VEGF-A binding, competition assays revealed interaction with non-overlapping epitopes on the receptor. Biparatopic molecules, comprising the two Affibody domains, were hence engineered to potentially increase affinity even further through avidity. Moreover, an albumin-binding domain was included for half-life extension in future in vivo experiments. The best-performing of the biparatopic constructs demonstrated up to 180-fold slower dissociation than the monomers. The new Affibody constructs were also able to specifically target VEGFR2 on human cells, while simultaneously binding to albumin, as well as inhibit VEGF-induced signaling. In summary, we have generated small antagonistic biparatopic Affibody molecules with high affinity for VEGFR2, which have potential for both future therapeutic and diagnostic purposes in angiogenesis-related diseases.
منابع مشابه
Bacterial display systems for engineering of affinity proteins
Directed evolution is a powerful method for engineering of specific affinity proteins such as antibodies and alternative scaffold proteins. For selections from combinatorial protein libraries, robust and high-throughput selection platforms are needed. An attractive technology for this purpose is cell surface display, offering many advantages, such as the quantitative isolation of high-affinity ...
متن کاملAffibody molecules for proteomic and therapeutic applications
This thesis describes generation and characterization of Affibody molecules with future applications in proteomics research, protein structure determinations, therapeutic treatment of disease and medical imaging for in vivo diagnostics. Affibody molecules are engineered affinity proteins developed by combinatorial protein engineering from the 58-residue protein Aderived Z domain scaffold. Novel...
متن کاملChemical Synthesis of Affibody Molecules for Protein Detection and Molecular Imaging
Proteins are essential components in most processes in living organisms. The detection and quantification of specific proteins can be used e.g. as measures of certain physiological conditions, and are therefore of great importance. This thesis focuses on development of affinity-based bioassays for specific protein detection. The use of Affibody molecules for specific molecular recognition has b...
متن کاملInhibiting HER3-Mediated Tumor Cell Growth with Affibody Molecules Engineered to Low Picomolar Affinity by Position-Directed Error-Prone PCR-Like Diversification
The HER3 receptor is implicated in the progression of various cancers as well as in resistance to several currently used drugs, and is hence a potential target for development of new therapies. We have previously generated Affibody molecules that inhibit heregulin-induced signaling of the HER3 pathways. The aim of this study was to improve the affinity of the binders to hopefully increase recep...
متن کاملLlama-Derived Single Domain Antibodies to Build Multivalent, Superpotent and Broadened Neutralizing Anti-Viral Molecules
For efficient prevention of viral infections and cross protection, simultaneous targeting of multiple viral epitopes is a powerful strategy. Llama heavy chain antibody fragments (VHH) against the trimeric envelope proteins of Respiratory Syncytial Virus (Fusion protein), Rabies virus (Glycoprotein) and H5N1 Influenza (Hemagglutinin 5) were selected from llama derived immune libraries by phage d...
متن کامل